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LE'ITER TO THE EDITOR 

Critical properties of an Ising model with infinite-range 
coupling 
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t Istituto di Fisica Teorica, Universith di Trieste and INFN, Trieste. Italy 
$ SISSA and INFN, Trieste. Italy11 
8 Istituto di Fiscia Teorica, Univenith di Pisa and INFN, Pisa, Italy 

Received 8 February 1982 

Abstract. A proper lower bound approximation to the true free energy per site of an king 
model with infinite-range interaction is obtained by the Migdal-Kadanoff real space 
recursion formulae. The results for the critical behaviour are confirmed by the mean field 
analysis. 

It is well known that the Migdal-Kadanoff (Migdal 1975, Kadanoff 1976) approxima- 
tion and the mean field theory are respectively a lower and an upper bound to the 
true free energy of a spin model. In a recent paper (Baracca et a1 1981) the king 
model and the Potts model have been analysed by a variational procedure, which 
combines these two approximations. One of the conclusions of the paper was that 
no phase transition was directly evident in the free energy of the models under analysis 
looking at the Migdal-Kadanoff lower bound. The aim of this note is to study the 
free energy of an Ising-like model with an infinite-range coupling whose action is 

where (i, j )  represents the ensemble of all the nearest-neighbour sites of a hypercubic 
lattice A composed of N sites. It is known that the Curie-Weiss model of ferromagnet- 
ism (Stanley 1971, Kac 1968), which is the second term of the RHS of ( l ) ,  is exactly 
solvable by the mean field theory; but this is only an ingredient of our model, which 
contains also an Ising coupling k. The model can be interpreted as follows: a 
nearest-neighbour local interaction is superposed onto an infinite-range interaction 
triggered by a parameter A which couples each varicble s, with a 'mean field' given 
by N -  'Xfsl. In  the disordered phase where Z,s, - JN this infinite-range coupling is 
negligible-at least for large N-while in the ordered phase where X,s, - N the A 
coupling plays a crucial role. Let us stress that when i = j we obtain an additive 
constant A, which has no influence on the evaluation of the physical quantities, and 
when i is nearest neighbour to j we get the contribution 2dhN-I to the k coupling. 
Consequently the action (1) should be written as follows: 
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where k' = k + 2dAN-' and >i, j (  represents the ensemble of all the pairs of sites beyond 
the nearest neighbours. In the actual calculations we shall use the action (l),  since 
in the thermodynamic limit, i.e. N + 43, (1) and (1') have the same critical behaviour. 
We shall prove that the Migdal-Kadanoff behaviour for the free energy shows directly 
a phase transition in the parameter space spanned by k and A. 

A direct application of the renormalisation group to the model (1) is not feasible, 
since the reduction of the degrees of freedom should be done simultaneously over all 
the interaction scales. The crucial point to overcome this obstacle is the application 
of a gaussian transformation of the partition function Z, 

(1 .1 )  , 4A 

N 112 +a: 

Z = ( G) Tr, I-, dh exp 

Since h is independent of the s,, the order of the integrations can be inverted. 
In what follows we shall consider only the case A > 0, in which the RHS of (2) can 

be interpreted as the partition function of an king model in an external magnetic 
field with a gaussian distribution. The case A < 0 would imply an imaginary magnetic 
field, which would complicate the Migdal-Kadanoff treatment. 

The calculation of the partition function of the model (1) is performed in two 
steps: first we sum over the configurations of the s, using the Midgal-Kadanoff 
decimation technique doubling the lattice spacing, and then we perform the integral 
over h. This calculation is done on a finite lattice A with periodic boundary conditions 
and composed of N = 21d sites, where d is the dimension. We obtain the following 
recursion formulae for the couplings: 

h' = h + i d  ln[c0sh(2~k + h)/c0sh(2~k - h ) ] ,  

k' = f ln[c0sh(2~k + h )  ~ o s h ( 2 ~ k  - h)/cosh2 h]. (3)  

The 'free energy' per site at fixed h is 

where 

h2N 
Z ( h )  = Tr, exp( k 1 s,s, + h 1 s,) exp( -=) 

( 1 . 1 )  I 

and 

U(,) = i d  ln[~osh(2~k,  + h , )  c0sh(2~k, - h,)  cosh2 h,]  + (2d - d - 1) In cosh h,. 

The contribution of the last integration with periodic boundary conditions is 

Ffinal = -(1/21d)(k,d +In cosh h, ) .  ( 5 )  

Now we must integrate over h to obtain the expression of the free energy per site 
9 ( k ,  A )  of the model (1) defined as 

This last integral can be evaluated by the saddle point method, which is a good 
approximation for N sufficiently large. We have verified that the function F ( k ,  A ; h )  
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is symmetric in h, and that the stationary points are its minima. Therefore 

9 ( k ,  A )  = min f l k ,  A ;  h) .  (7) 

The neglected terms are O(ln N / N )  coming from the saddle point approximation and 
from the normalisation of the gaussian transformation. We have studied numerically 
the behaviour of 9 ( k ,  A )  in d = 2 and we have found evidence of a discontinuity of 
some derivatives of 9 ( k ,  A ). For instance, if one looks at the shape of 9 as a function 
of A at fixed k one gets a stricr 'plateau' region (the value of the free energy is constant 
up to the twelfth significant figure) up to some 'critical' A,, after which 9 starts to 
decrease. This happens in a certain range of k. Now if we fix A and vary k although 
we haven't any plateau region, a discontinuity is still present in one of the derivatives 
of 9 with respect to k at some k,. These two procedures are consistent since they 
give the same critical line (k,,A,). The origin of this 'non-analytic' behaviour of 9 is 
probably twofold: in part it comes from the recursion procedure applied many times 
(we have considered a lattice up to 260 sites) and also from the saddle point 
approximation, which is valid for large N. We have interpreted this behaviour as the 
presence of phase transitions, which are pictured by a line in the plane ( k ,  A )  (see 

lhl<m 

A 

Figure 1. The critical line on the plane (k, A )  for the mean field (straight line) and for 
the Migdal-Kadanoff renormalisation technique (curved line). 

figure 1). This line intersects the k axis at the Migdal-Kadanoff critical fixed point 
( k ,  = 0.305). As for the A axis, on which the model is exactly solvable, we can obtain 
analytically the exact value of A, using formulae (3)-(7). In fact when k = 0 also k' = 0 
and h '  = h. Therefore (7) becomes 

( 8 )  
1 

-3Incoshh n - 1  2-"d--lncoshh+h2). 2 Id 
4A 

Now we can identify the stationary points by direct calculations. The condition 

dF(0, A ; h ) / d h  = 0 (9) 
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gives a ‘consistency’ equation, similar to a molecular field equation: 

The value of A, can be derived by the following condition on the second derivative: 

(11) 
y F ( 0 , A ; h ) l  a’ = O .  
ah h -0 

1 One obtains in the limit N + 00 ( 1 - m )  A, = 5. 
By numerical computations for I = 7 we have found that the discontinuity in the 

second derivative of 9 near the critical points is much larger than the discontinuity 
in the first derivative. For instance, at k = 1.5 around A, = 0.228 the discontinuity in 
the second derivative is five orders of magnitude larger than in the first derivative, 
which is Therefore, we suspect that the transition is second order. We have 
looked for a confirmation of this suspicion by applying the mean field approximation 
to the model (1). We introduce the mean field approximation in the standard way 
(BrCzin et a1 1976) to obtain a lower bound for the partition function 

2 = Tr, eA1’’*Trs exp A[sl- B s,) ) =ZMF (12) 
I B  

where B is the mean field and ( )B represents the mean over the statistical weight 
exp(BZlsl). Now let us write the action (1) in the form 

We can derive, therefore, an upper bound for the free energy per site given by 

9s ~ M F  = B du/dB - U - (dU/dB)’j (14) 

where 

U = u(B) = In cosh B, = N 1 Jl,. 
1.1 

Introducing the mean field order parameter 

du/dB = (S)MFE m, (15) 

one obtains 

9MF=-mZj+~(1+m) ln ( l+m)+4(1 -m) In ( l -m) .  (16) 

This expression has only one minimum in m = 0 if j < 5 and two symmetric minima 
if j > $. In our case, therefore, the critical line in the plane (k, A )  is j ,  = dk,+ A, = 4. 
This straight line is shown in figure 1. It is easy to verify that there is no discontinuity 
around J, in the first derivative of F M F  with respect to j ,  while a discontinuity is 
present in the second derivative. We conclude that the transitions are second order. 
This is in agreement with the numerical results obtained by the Migdal-Kadanoff 
method. 

We want to stress that we have been able, at least for this model, to obtain a 
sensible critical behaviour of the free energy through a lower bound approximation. 
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Further work is in progress to analyse the case A CO, to extend the results to any 
dimension and to study the critical exponents. We want to note, finally, that the 
model (1) can be easily generalised to a Potts-like model (Potts 1952), and that in 
this case the role of the first-order phase transition would be interesting to analyse. 

We would like to thank D J Wallace for helpful discussions during the stay of one 
of us (SR) in Edinburgh. We acknowledge also fruitful discussions with G Parisi and 
AStella We would like to thank also the SISSA and the ICTP in Trieste for their 
kind hospitality. 
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